如何匹配門(mén)極驅(qū)動(dòng)器,來(lái)增強(qiáng)型GaN功率晶體管?
發(fā)布時(shí)間:2019-11-07 責(zé)任編輯:lina
【導(dǎo)讀】氮化鎵(GaN)是最接近理想的半導(dǎo)體開(kāi)關(guān)的器件,能夠以非常高的能效和高功率密度實(shí)現(xiàn)電源轉(zhuǎn)換。但GaN器件在某些方面不如舊的硅技術(shù)強(qiáng)固,因此需謹(jǐn)慎應(yīng)用,集成正確的門(mén)極驅(qū)動(dòng)對(duì)于實(shí)現(xiàn)最佳性能和可靠性至關(guān)重要。本文著眼于這些問(wèn)題,給出一個(gè)驅(qū)動(dòng)器方案,解決設(shè)計(jì)過(guò)程的風(fēng)險(xiǎn)。
氮化鎵(GaN)HEMT是電源轉(zhuǎn)換器的典范,其端到端能效高于當(dāng)今的硅基方案,輕松超過(guò)服務(wù)器和云數(shù)據(jù)中心最嚴(yán)格的80+規(guī)范或USB PD外部適配器的歐盟行為準(zhǔn)則Tier 2標(biāo)準(zhǔn)。雖然舊的硅基開(kāi)關(guān)技術(shù)聲稱性能接近理想,可快速、低損耗開(kāi)關(guān),而GaN器件更接近但不可直接替代。為了充分發(fā)揮該技術(shù)的潛在優(yōu)勢(shì),外部驅(qū)動(dòng)電路必須與GaN器件匹配,同時(shí)還要精心布板。
對(duì)比GaN和硅開(kāi)關(guān)
更高能效是增強(qiáng)型GaN較硅(Si)開(kāi)關(guān)的主要潛在優(yōu)勢(shì)。不同于耗盡型GaN,增強(qiáng)型GaN通常是關(guān)斷的器件,因此它需要一個(gè)正門(mén)極驅(qū)動(dòng)電壓來(lái)導(dǎo)通。增強(qiáng)型GaN的更高能效源于較低的器件電容和GaN的反向(第三象限)導(dǎo)電能力,但反向恢復(fù)電荷為零,這是用于硬開(kāi)關(guān)應(yīng)用的一個(gè)主要優(yōu)點(diǎn)。低柵極源和柵極漏電容,產(chǎn)生低總柵電荷,支持門(mén)極驅(qū)動(dòng)器快速門(mén)極開(kāi)關(guān)和低損耗。此外,低輸出電容提供較低的關(guān)斷損耗??赡苡绊憣?shí)際GaN性能的其他差別是沒(méi)有漏源/柵雪崩電壓額定值和相對(duì)較低的絕對(duì)最大門(mén)極電壓,Si MOSFET約+/-20V,而GaN通常只有+/-10V。另外,GaN的導(dǎo)通閾值(VGTH) 約1.5V,遠(yuǎn)低于Si MOSFET(約3.5V)。如果外部驅(qū)動(dòng)和負(fù)載電路能夠可靠地控制源極和門(mén)極電壓,開(kāi)關(guān)頻率可達(dá)數(shù)百kHz或MHz區(qū)域,從而保持高能效,進(jìn)而減小磁性器件和電容尺寸,提供高功率密度。
GaN門(mén)極驅(qū)動(dòng)對(duì)性能至關(guān)重要
使門(mén)極驅(qū)動(dòng)電壓保持在絕對(duì)最大限值內(nèi)并不是唯一的要求。對(duì)于最快的開(kāi)關(guān),一個(gè)典型的GaN器件需要被驅(qū)動(dòng)到約5.2V的最佳VG(ON)值,這樣才能完全增強(qiáng),而不需要額外的門(mén)極驅(qū)動(dòng)功率。驅(qū)動(dòng)功率PD由下式得出:
其中VSW為總門(mén)極電壓擺幅,f為開(kāi)關(guān)頻率,QGTOT為總門(mén)極電荷。雖然GaN門(mén)極具有有效的電容特性,但在門(mén)極的有效串聯(lián)電阻和驅(qū)動(dòng)器中功率被耗散。因此,使電壓擺幅保持最小很重要,特別是在頻率很高的情況下。通常,對(duì)于GaN來(lái)說(shuō),QGTOT是幾nC,約是類(lèi)似的硅MOSFET值的十分之一-這也是GaN能夠如此快速開(kāi)關(guān)的原因之一。GaN器件是由電荷控制的,因此對(duì)于納秒開(kāi)關(guān)具有納米庫(kù)侖門(mén)極電荷,峰值電流為放大器級(jí),必須由驅(qū)動(dòng)器提供,同時(shí)保持精確的電壓。
理論上,GaN器件在VGS = 0安全關(guān)斷,但在現(xiàn)實(shí)世界中,即使是最好的門(mén)極驅(qū)動(dòng)器,直接施加到門(mén)極的電壓也不可能是0V。根據(jù)VOPP = -L di/dt (圖1),在門(mén)極驅(qū)動(dòng)回路共有的源引線中的任何串聯(lián)電感L都會(huì)對(duì)門(mén)極驅(qū)動(dòng)器產(chǎn)生相反的電壓VOPP,這會(huì)導(dǎo)致高源di/dt的假開(kāi)關(guān)。同樣的影響可能是由關(guān)態(tài)dv/dt迫使電流流過(guò)器件的“Miller”電容造成的,但對(duì)于GaN,這可忽略不計(jì)。一種解決方案是提供一個(gè)負(fù)門(mén)極關(guān)斷電壓,可能-2或-3V,但這使門(mén)極驅(qū)動(dòng)電路復(fù)雜,為避免復(fù)雜,可通過(guò)謹(jǐn)慎布板和使用以‘開(kāi)爾文連接’和具有最小封裝電感的器件如低高度、無(wú)鉛PQFN型封裝。
圖1:源極和門(mén)極驅(qū)動(dòng)共有的電感會(huì)引起電壓瞬變
高邊門(mén)極驅(qū)動(dòng)的挑戰(zhàn)
GaN器件不一定適合于所有的拓?fù)浣Y(jié)構(gòu),如大多數(shù)“單端”反激式和正激式?jīng)]有反向?qū)?,而且其高于硅MOSFET的額外成本超過(guò)了任何小的能效優(yōu)勢(shì)。然而,“半橋”拓?fù)?如圖騰柱無(wú)橋PFC、LLC轉(zhuǎn)換器和有源鉗位反激-將自然成為GaN的根據(jù)地,無(wú)論是硬開(kāi)關(guān)還是軟開(kāi)關(guān)。這些拓?fù)涠加?ldquo;高邊”開(kāi)關(guān),其源是個(gè)開(kāi)關(guān)節(jié)點(diǎn),因此門(mén)極驅(qū)動(dòng)被一個(gè)具有納秒級(jí)的高壓和高頻波形所抵消。門(mén)極驅(qū)動(dòng)信號(hào)來(lái)源于參照系統(tǒng)地面的控制器,因此高邊驅(qū)動(dòng)器必須將電平移位與適當(dāng)?shù)哪蛪侯~定值(通常為450 V或更高)結(jié)合起來(lái)。它還需要一種為高邊驅(qū)動(dòng)產(chǎn)生低壓電源軌的方法,通常采用由自舉二極管和電容組成的網(wǎng)絡(luò),參照開(kāi)關(guān)節(jié)點(diǎn)。開(kāi)關(guān)波形應(yīng)力為dV/dt,GaN可達(dá)100 V/ns以上。這導(dǎo)致位移電流流經(jīng)驅(qū)動(dòng)器到地面,可能導(dǎo)致串聯(lián)電阻和連接電感的瞬態(tài)電壓,可能損壞敏感的差分門(mén)極驅(qū)動(dòng)電壓。因此,驅(qū)動(dòng)器應(yīng)具有較強(qiáng)的dV/dt抗擾度。
為了最大限度地防止災(zāi)難性的“擊穿”和實(shí)現(xiàn)最佳能效,半橋高邊和低邊器件應(yīng)保證無(wú)重疊被驅(qū)動(dòng),同時(shí)保持最少的死區(qū)時(shí)間。因此,高邊和低邊驅(qū)動(dòng)應(yīng)有控制非常好的、匹配的傳播延遲。
對(duì)于低邊,接地驅(qū)動(dòng)器應(yīng)直接在開(kāi)關(guān)源進(jìn)行開(kāi)爾文連接,以避免共模電感。這可能是個(gè)問(wèn)題,因?yàn)轵?qū)動(dòng)器也有一個(gè)接地信號(hào),這可能不是最好的連接。因此,低邊驅(qū)動(dòng)器可能采用隔離或某種分離功率和信號(hào)的方法,具有一定程度的共模電壓容限。
GaN驅(qū)動(dòng)器可能需要安全隔離
現(xiàn)在增強(qiáng)型GaN器件正受到極大的關(guān)注用于離線應(yīng)用,這種應(yīng)用要求設(shè)備及其驅(qū)動(dòng)器至少有600 V的高壓額定值,但較低的電壓應(yīng)用越來(lái)越普遍。如果驅(qū)動(dòng)器輸入信號(hào)由控制器產(chǎn)生,可通過(guò)通信接口人工訪問(wèn)連接,則驅(qū)動(dòng)器將需要符合相關(guān)代碼的安全隔離。這可通過(guò)高速信號(hào)伽伐尼隔離器以適當(dāng)?shù)慕^緣電壓實(shí)現(xiàn)。保持驅(qū)動(dòng)器信號(hào)邊緣率和高低邊匹配成為這些布板的問(wèn)題,雖然控制器電路常被允許‘primary-referenced’,但無(wú)論如何,在大多AC-DC轉(zhuǎn)換器中這是常態(tài)。
應(yīng)用示例 – ‘有源鉗位反激’
這是個(gè)有源鉗位反激拓?fù)涞睦?圖2),使用一個(gè)高邊開(kāi)關(guān)將換流變壓器的漏感能量循環(huán)供應(yīng)。與“緩沖”或硬齊納鉗位法相比,能效更高,EMI更好,漏波更干凈,電路應(yīng)用功耗低,在45W到150 W之間,典型的應(yīng)用包括支持USB PD的手機(jī)和膝上型計(jì)算機(jī)的旅行適配器,以及嵌入式電源。
圖2:GaN有源鉗位反激轉(zhuǎn)換器概覽
圖2顯示安森美半導(dǎo)體的NCP51820專用GaN門(mén)極驅(qū)動(dòng)器[1]及NCP1568[2]有源鉗位反激控制器 (細(xì)節(jié)省略)。該驅(qū)動(dòng)器采用具有調(diào)節(jié)的+5.2V幅度的門(mén)極驅(qū)動(dòng)器用于高邊和低邊最佳增強(qiáng)型GaN。其高邊共模電壓范圍-3.5V到+650V,低邊共模電壓范圍為-3.5至+3.5V,dv/dt抗擾度200 V/ns,采用了先進(jìn)的結(jié)隔離技術(shù)。如果在低邊器件源極有一個(gè)電流檢測(cè)電阻器,低邊驅(qū)動(dòng)電平移位使開(kāi)爾文連接更容易。驅(qū)動(dòng)波形的上升和下降時(shí)間為1ns,最大傳播延遲為50 ns,且高低邊提供獨(dú)立的源汲輸出,以定制門(mén)極驅(qū)動(dòng)邊沿,達(dá)到最佳的EMI/能效折衷。在這種拓?fù)浣Y(jié)構(gòu)中,高低邊驅(qū)動(dòng)器不重疊,但具有不同的脈沖寬度,以實(shí)現(xiàn)由NCP1568器件控制的具漏極鉗位和零電壓開(kāi)關(guān)的電源轉(zhuǎn)換/調(diào)節(jié)。
應(yīng)用示例 – LLC轉(zhuǎn)換器
在功率大于150 W的情況下,諧振式LLC轉(zhuǎn)換器因能效高、開(kāi)關(guān)電壓應(yīng)力有限而常被使用。該轉(zhuǎn)換器的一個(gè)特點(diǎn)是驅(qū)動(dòng)波形為50%的占空比,通過(guò)變頻調(diào)節(jié)。因此,控制死區(qū)時(shí)間以保證不發(fā)生重疊至關(guān)重要。圖3顯示了NCP13992高性能LLC控制器的典型架構(gòu)。這種設(shè)計(jì)可以在500 kHz的開(kāi)關(guān)頻率下工作,并且通常用于大功率游戲適配器和OLED電視、一體化電腦的嵌入式電源。
圖3:基于GaN的LLC轉(zhuǎn)換器概覽
所示的安森美半導(dǎo)體NCP51820驅(qū)動(dòng)器確保門(mén)極驅(qū)動(dòng)不重疊,但這可視拓?fù)湫枰?如電流饋電轉(zhuǎn)換器)而禁用。該器件還含一個(gè)使能輸入和全面的保護(hù),防止電源欠壓和過(guò)溫。它采用PQFN、4×4mm 的15引線封裝,使短、低電感連接到GaN器件的門(mén)極。
布板考量
在所有應(yīng)用中,布板是成功的關(guān)鍵。圖4顯示了一個(gè)采用安森美半導(dǎo)體的NCP51820的示例布板,微型化并匹配門(mén)驅(qū)動(dòng)回路。GaN器件和驅(qū)動(dòng)器被置于PCB同側(cè),通過(guò)適當(dāng)?shù)厥褂媒拥?返回面來(lái)避免大電流通孔。
圖4:GaN門(mén)極驅(qū)動(dòng)電路的好的布板
總結(jié)
對(duì)于GaN開(kāi)關(guān),需要仔細(xì)設(shè)計(jì)其門(mén)極驅(qū)動(dòng)電路,以在實(shí)際應(yīng)用中實(shí)現(xiàn)更高能效、功率密度及可靠性。此外,謹(jǐn)慎的布板,使用專用驅(qū)動(dòng)器如安森美半導(dǎo)體的NCP51820,及針對(duì)高低邊驅(qū)動(dòng)器的一系列特性,確保GaN器件以最佳性能工作。
特別推薦
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 服務(wù)器電源設(shè)計(jì)中的五大趨勢(shì)
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個(gè)重要參數(shù)!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
技術(shù)文章更多>>
- MD&M West展會(huì):Micro Crystal攜創(chuàng)新定時(shí)元件,共繪醫(yī)療科技新藍(lán)圖
- PLC 交流模塊的 TRIAC 輸出故障排除
- 解鎖AI設(shè)計(jì)潛能,ASO.ai如何革新模擬IC設(shè)計(jì)
- 汽車(chē)拋負(fù)載Load Dump
- 50%的年長(zhǎng)者可能會(huì)聽(tīng)障?!救贖的辦法在這里
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
過(guò)熱保護(hù)
過(guò)壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開(kāi)關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車(chē)
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器
繼電器接線
減速電機(jī)
檢波二極管
檢波器
檢驗(yàn)設(shè)備
鑒頻器